THERMAL CONVECTION WAVES IN VISCOELASTIC FLUIDS
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We demonstrate that undamped and weakly damped thermal convection waves, in particular,
thermal and transverse waves, can be propagated in viscoelastic heat-conducting fluids.

We have found the frequency spectrum and the wavelengths for such waves. We indicate
the possibility of developing a mechanical generator of thermal oscillations.

Let us examine the propagation of small perturbations in temperature, velocity, and density in a vis-
coelastic heat-conducting compressible fluid that is exclusively thermal. We will demonstrate that in the
presence of a gravitational field, as well as in the presence of a special temperature field, these perturba-
tions may be propagated in the form of undamped and weakly damped thermal convection waves.

1. There are several mathematical models of viscoelastic fluids [1-4]. We will use the isotropic
Maxwell model with a single relaxation time 7 [1-4]:
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where O denotes the components of the viscous stress tensor; Vi denotes the velocity components; and u

and 7 are viscosity coefficients. We will refer to the viscoelastic medium subject to the rheological equa-
tion of state (1) as a Maxwell fluid, which is the practice in the literature. The nonsteady motion and ther-
mal processes in Maxwell fluids in a gravitational field are described by the following system of equations:
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where & is a dissipaiive function, while the tensor components Ukj are found from (1).

Let us examine the manner in which small perturbations in temperature, velocity, and density are
propagated against the background of a volume of Maxwell fluid (mechanically in equilibrium, with a ani-
form stressed state) in the presence of a constant temperature gradient in the direction of the gravitational
field. We will restrict ourselves to an examination of the perturbations propagating in a direction per-
pendicular to the gravitational field, in the form of steady-state plane waves. The entire set of tempera-
ture, viscosity (oscillations in the transverse component of velocity), and sonic waves propagating in the
nonisothermal fluid in a gravitational field exclusively as a consequence of thermal compressibility will be
referred to as thermal convection waves. All of the quantities in a state of mechanical equilibrium will
be noted by the index zero, while small deviations from these quantities will be indicated by a prime. Then,
following the familiar method of [5], we will seek the solution of system (1)-(5) in the form

v, =0+u (x, 1), 0= Gg}) + 0,;]. (x, ), 0=po+p(x B,
p=py+px, ), T=T,+T(x 1. (6)

Institute of Heat and Mass Transfer, Academy of Sciences of the Belorussian SSR, Minsk. Translated
from Inzhenerno-Fizicheskii Zhurnal, Vol. 16, No. 5, pp. 780-785, May, 1969. Original article submitted Feb-
ruary 12, 1969.

© 1972 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York,
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whaisoever withous
permission of the publisher. A copy of this article is available from the publisher for $15.00.




Let us write the equations for the perturbations (we drop the primes):
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We assumed in the derivation of system (7)-(13) that the amplitude of the transverse oscillations of
the fluid is considerably smaller than the wavelength, and we applied the same assumption with respect
to the characteristic distance for the change in temperature, density, and pressure in mechanical equilib-
rium. The viscosity coefficients u, and 7y, the coefficient of thermal conductivity A, the heat capacity c,,
density p,, and the pressure p, are therefore assumed to be constant. Inthe linearized equation of state
the change in density with pressure in treated as a magnitude of the second order of smallness.

The equations for the temperature (12), for the transverse velocity component (8), for the stress-ten-
sor component Oxy (10), and for the density (13) are not associated with the remaining equations of the sys-
tem and can be solved independently. Knowing p, from the continuity equation it is not difficult to find the
longitudinal velocity component; then, from Eq. (9) we can find the stress-tensor component, and the pres-
sure can be found from (7). '

We will seek the solutions for (8), (11), (13), and (14) [sic] in the form

v =V expi(of — kx),
Oy = 11 exp i (0f — kx), (14)
T =6 exp i (ot — kx).

Having substituted (14) into (8), (11), (13), and (14) [sic], we will have
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A nontrivial solution for (15) is possible if the determinant of the system is different from zero. This con-
dition enables us to write the dispersion equation which determines the relationship between the wave num-
ber and the frequency, i.e.,
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We will assume the wave number to be complex, i.e., k =k, +ik,, and we will assume the frequency to be
real. Separating the real and imaginary parts in (16) we derive two equations for the determination of the
functions Re[k(w)] = ky(w) and Im [k(w)] = ky(w):
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The real part of the wave number k; is associated with the wavelength I by the relationship ! = 27/k;. The
imaginary part of the wave number k, determines the depth of penetration L = kgi.
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The depth of penetration is understood to refer to the distance at which the amplitude of the wave
diminishes by a factor of e.

We begin the analysis of (17) with the case in which the waves are propagated without attenuation,
i.e., k; = 0. In a viscous heat-conducting medium this is possible only with synchronous compensation of
the dissipated energy from external sources. In principle, this is possible in the case under consideration,
since the required energy can be drawn from the constant gravitational and thermal fields. The solution of
these equations shows that only waves of completely defined frequency and length can be propagated without
attenuation in a given fluid; these waves are governed by the gravitational field, the temperature gradient, and
the pressure gradient:
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Let us write out the expression for the phase velocity found with the undamped wave:
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From the requirement that (18) and (20) be real, we have the following limitations on the magnitude and
sign of the product gygrs:
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If @ > 0, since (m + v)2 = (n +v)v, the first of the inequalities written out is a consequence of the second;
when o < 0 and |w] > v the second inequality is a consequence of the first. When o > 0 we see from (22)
that in a medium with a positive coefficient of thermal expansion the temperature gradient must be anti-
parallel to the gravitational field (heating from above). In a medium with a negative coefficient of thermal
expansion the temperature gradient is parallel to the gravitational field (heating from above). Inequalities
(21) and (22)can also be treated from the standpoint of limitations on the characteristic of an elastic fluid
— the relaxation time 7. It follows from (21) and (22) that for the specified thermal and viscous properties
of the {luid, and with specified temperature and gravitational fields, undamped thermal convection waves
can be propagated in fluids with a relaxation time greater than [(» + v)/Bygnt/? or [ + »)Ypygwr]/
Consequently, the undamped thermal convection waves cannot propagate in purely viscous heat-conducting
fluids, However, in such fluids, as will be demonstrated below, we can have the propagation of weakly damped
thermal convection waves.

Let us present several numerical estimates. Let w ~V ~10"° m?/sec, g ~107% m/sec . deg, which
corresponds to the characteristics of gases, whereas when v~ 1 deg/m we have 7 = 1 sec, for y~ 102
deg/m we have T = 107! sec. Let v~ 1072 m?/sec, n~ 1077 m?¥/sec, g~ 107" m/deg- sec, as, for example,
in very viscous fluids, then for v~ 1 deg/m we have 7 = 10% sec, while for Y~ 102 deg/m we have T =, 104
sec.

Let us present certain asymptotic estimates. With an increase in the relaxation time 7 the frequency
in (18) becomes an increasingly weaker function of 7 and at the limit tends to w = (8 ygv/x)i/z, and the
square of the wave number as a function of the relaxation time, in this case, becomes linear, i.e., k* ~78vyg
/v. Thus at the limit of large 7, the length and velocity of the thermal convection waves diminish as Y2,

2. Let us turn to an examination of the damped thermal convection waves. We are primarily in-
terested in the weakly attenuated waves in purely viscous fluids where T = 0. The existence of weakly at-
tenuated waves in a Maxwell fluid with frequencies and wavelengths close to those examined in the previous
section is regarded as self-evident. The solution of the dispersion equations (17) at the limit as 7 — 0 pre-
sents no difficulty. Omitting the intervening calculations, we write the final results:

a) 0?(v—ux)®—4nvfyg =r>0.
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We see from expressions (23)-(25) that depending on the absolute value and sign of pygw-2, in principte,
various thermal convection waves can be propagated in the fluid. For all frequencies w under the condition
that By < 0 and for frequencies w = 2 (nrByg) Y2y —n!~! when gy > 0 highly damped waves (24) propagate.
Indeed, the depth of penetration in this case is of the same order of magnitude as the wavelength L ~ 1.,
This process of propagating perturbations is essentially aperiodic and it is proper that it be referred to as
an oscillatory process, rather than a wave process,

The situation is different with the propagation of perturbations for frequencies w < 2 (wﬁyg)l/ 2y
—%!7!in a liquid with gy > 0. Here, as we can see from (24) and (25), two waves are propagated with the
specified frequency. One, corresponding to the plus sign in front of the B in (25), is a strongly damped
wave, The other, whose wave-vector components we write in the form

k= AB(V/ 1+ &Bt—1)]~17,
(26)
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may be weakly damped under certain conditions.

Let us determine these conditions. First of all, we must require a large absolute value for the depth
of attenuation L. This is possible when AZB™% « 1, Secondly, the depth of penetration must be large in the
scale of thewavelengths. In answer to the question as to when this is satisfied, we must analyze the expres-
sion L/I:
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Considering the condition A’B™% « 1, we simplify expression (27) to
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It is not difficult to see that the ratio L/I will be the larger, the greater the coefficient of thermal expansion
and the greater the temperature gradient, the smaller the frequency, and the closer the numerical values of
the coefficients of kinetic viscosity and thermal diffusivity. The absolute magnitude of the temperature
gradient is bounded from above by the condition that mechanical equilibrium prevail, so that there is a finite
upper limit for the frequencies which are propagated with low attenuation, i.e., w < (ﬁ'yg)i/z. As demon-
strated by calculations, the low-frequency oscillations are weakly attenuated. We will present the numerical
estimates. Best from the standpoint of high-frequency transmission are media with » =~ v, e.g., air p~1
atm, T ~15°C, ¥ ~ 10~ m?/sec, and ® ~2-107% m?/sec. With a temperature gradient of 10% deg/m at a fre-
quency of 10~% Hz the depth of penetration is ~10 m or ~103 wavelengths, and with a frequency of 10™¢ Hz we
have L ~10% m and L/ ~ 104

Weakly damped thermal convection waves of specific frequencies and lengths can thus be propagated
in nonisothermal viscous liquids with a temperature gradient parallel (antiparallel) to the gravitational field
in a direction perpendicular to § and AT. The greatest interest with regard to thermal convection waves is
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apparently centered on the possibility the propagation of weakly damped transverse and thermal waves,
since in an isothermal liquid in mechanical equilibrium (without consideration of the forces of gravity) the
temperature and viscous waves are strongly damped [5, 6].

The thermal convection waves predicted and studied in this paper may be used to develop a heat
source of transverse oscillations, as well as for the measurement of elastic, viscous, and thermal prop-
erties of a liquid, the design of a mechanical heat-oscillation generator, and for similar purposes.
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